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The relationship of phase to the choice of origin, enantiomorph or frame of reference is clarified for 
those non-centrosymmetrie space groups for which the conventional unit cell is not primitive. The 
theory employs special linear combinations of the phases, the structure seminvariants. Simple 
procedures are developed for selecting the origin by first fixing the functional form of the structure 
factor, then specifying the sign of a seminvariant when required, and, finally, specifying arbitrarily 
the vahms of a suitable set of phases. 

This paper completes the study of the seminvariants for all the space groups. 

1. I n t r o d u c t i o n  

in the direct determinat ion of phases from the ob- 
served intensities it is necessary to relate the values 
,)f the phases to the choice of origin, reference frame 
and enant iomorph.  This proI)lem has a l ready been 
t rea ted for the centrosymmetr ic  space groups (Haupt-  
man & Karle,  1953, 1959) and for the non-centrosym- 
metric space groups for which the conventional unit  
(:ell is primit ive (Haup tnmn  & Karle,  1956). I t  was 
f()und tha t  certain linear combinations of the phases, 
the s t ructure  seminvariants ,  play a fundamenta l  role 
in these studies. The seminwlriants  show which linear 
e()mbinations are determined I)y the intensities alone 
and how specifications of i)hases are to 1)e made to 
fix the origin, f rame and enant iomorph.  

I n this paper  we complete the s tudy of seminvar iants  
for the various space groups, l)y considering the non- 
centrosymmetr ic  space groups for which the conven- 
tional unit  cell is non-primitive.  The non-primitive ccll 
is t ransformed to an appropr ia te  primit ive cell by 
means of well-known transformations.  The methods 
referred t() al)ovc arc then immediate ly  applical)le. 

2.  P r i m i t i v e  u n i t  c e l l s  

The coor(iinates representing the space group relative 
to a primitive unit  cell are obtained from those cor- 
responding to a non-primitive unit cell (International 
Tables, 1952) I)y means ()f the folh)wing matr ices:  

1 I () ') 
C -, P ,  I - 1  () , (2 .1)  

, () (~ - 1  

- 1 () ( ) )  
A -~ P, () - I l , (2.2) 

(~ I ! 

~) i I ) 
l , P ,  ! ~ 1 , (2 .3)  

1 l () 

i 
- - I  1 1 ) 

F-~P ,  l - 1  l . (2.4) 
1 1 - -1  

The results are shown in Tat)le 1. 

3.  D e f i n i t i o n s  

In the discussion to follow several concepts will t)e 
employed, namely,  linear and rat ional  dependence and 
independence, primitive sets, equivalence and semin- 
variance. These concepts are defined and developed 
in our previous papers (Haup tman  & Karle,  1956, 
§3 -§7"  1959, §4 and §5) to which the reader is re- 
ferred. They culminate in the main result which iden- 
tifies the s t ructure  seminwtriants,  namely  those lineal' 
corn binations 

~_~" Ahq 'h  , (3"l)  
h 

where the A h arc integers satisfying 

_~" Mhhs -- () (rood ~ )  . (3.2) 
h 

hs is the vcctor scminvar iant lv  associated with the 
phase qh, and ¢o~ is the seminw~riant modulus of the 
type. The seminvar iant  vectors and moduli are readily 
derived from the equivalence classes. These are listed 
in Table 2. I t  should be noted tha t  the functional form 
of the s t ructure  factor is the same for all origins 
comprising an cquiwdence class. 

This paper  is concerned with describing in detail 
simple methods for selecting the origin in each of four- 
teen types of space groups. The procedures to be 
presented are of a relat ively simple nature,  a l though 
more general procedures m a y  be readily derived from 
Table 2. 

All the theorems of this paper  are valid under either 
one of the folh)wing hypotheses. 

Hypothesis A" The crystal  s t ructure  is given" or 
Hypothesis B: A sufficiently large number  of s t rut -  
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T a b l e  I. Coordinates for centered non-centrosymmetric space groups referred to a primitive unit cell 

Space 
Group 

C2 X,Y,Z, ; Y,X,Z 

On X,Y,Z , Y,X,Z 

Cc X,Y,Z ; Y,X,/~Z 

Cmm2 X,Y,Z ; X,Y,Z, ; Y,X,Z ; Y,X,Z 

onc21 x.~.z ; L~./~+z ; L~.z ; Y.X./~z 

c=c2 x.~.z. ; x.Y.z ; ~.~./~z ; Y.X./~+z 

can x,Y,Z ; ~,~,z ; ~,x,z ; ~,x,~ 

c2221 x.~.z ; L~./~+z ; ¥.L/~,z ; Y.X.~ 

Amm2 X,Y,Z ; X,Y,Z ; X,Z,Y ; X,Z,Y 

~bm x,,,z ; L/e~,/~z ; x,/~z,/e~ ; iz,~ 

~ 2  x , Y , z  ; /#L~,z ; /~+x,z,Y ; ~,z,Y 

Aba2 X,Y,Z ; /~+X,/~Y,/~Z; /~X,/~Z,/~*Y; X,Z,Y 

F432 _Xa_Y~_E ; Z,X,Y ; Y,Z,X ; ~,Z,Y ; Y,X,Z ; Z,Y,X 
X+Y+Z,Z,Y ; ~+7+Z,Y,X ; ~[+~[+~[,X,Z ; X+Y+Z,~[,V ; X+Y+Z,Z,][ ; X+Y+Z,~,~[ 
Z,~+Y+Z,X ; Y,~+Y+g,Z ; X,~[+Y+Z,Y ; Y,X+Y+Z,X ; Z,X+¥+z,Y ; ~[,x+Y+z,~ 
Y,x,~+~[+Z ; x,z,~[+Y+~ ; z,Y,~[+Y+Z ; Z,~[,X+Y+z ; ~[,~[,x+Y+Z ; 7,~,x+¥+z 

F4132 X,Y,Z, ; Z,X,Y ; Y,Z,X ; ~+X,/~÷Z,~+Y ; ~+Y,~+X,~+Z ; ~Z,~.Y,~+X ; 
x*Y+~,z,~ ; x+Y~,Y,x ; x+Y,z,x,z ; /~+x+~+z,¼÷~,¼+~ ; /~+x+Y+Z,%,~,¼+~; %+x+Y+z,¼,~,¼+?; 

Z, X*Y+Z,X ; Y, X+Y~Z,Z ; X, X+Y*Z,Y ; /4*?,/4+X+Y+E,i+X ; %~Z,/~'X+Y+Z,%~:?; ~+X,/4+X+Y+Z,~+~; 
Y,X, X~'%*Z ; X,Z, X+Y÷Z ; Z,Y, X+Y+E ; Z÷Z,/4+X,/~+X+Y+Z ~4÷~,%~Y,/4+X+Y÷~; /~Y,Z*E,/4+X+Y+Z. 

F222 

F23 

F~3~ 

X,Y,Z ; Y,X,X+Y+~ ; ~+Y+Z,Z,Y ; Z,X+Y+Z,X 

X,Y,Z ; Z,X,Y ; Y,Z,X ; X+Y+Z,Z,Y ; X+Y+Z,Y,X ; ~+Z,X,Z 

Z,X+Y+Z,X ; Y,X+Y+Z,Z ; X,X+Y+Z,Y ; Y,X,X+Y+Z ; X,Z,X+Y+Z ; Z,Y,X+Y+Z 

X,Y,Z ; Z,X,Y ; Y,Z,X ; X,Z,Y ; Y,X,Z ; Z,Y,X 
~+~+Z,Z,Y ; ~+Y+Z,Y,X ; ~+?+Z,X,Z ; ~+Y+Z,Y,Z ; ~+Y+Z,Z,X ; ~+7+Z,X,Y 
Z,~+7+Z,X ; Y,~+Y+~,Z ; X,~+~+Z,Y ; Y,X+Y+Z,X ; Z,X+Y+Z,Y ; X,X+?+~,Z 
Y,X,~+7+~ ; X,Z,X+7+~ ; Z,Y,~+Y+~ ; Z,X,~+Y+Z ; X,Y,E+7+~ ; Y,Z,~+Y+Z 

X+Y*Z,Z,Y; X+Y+Z,Y,X ; X*Y÷~',X,Z , ~÷X+Y'÷Z,/ug-Y,/2+Z ; ~*X+YCZ,/u~-Z,/ug-X; /2+X'*YCZ,/2+X,/2+¥, 
zj x+Y¢Z,X; Y, ~t~¢Z,z ; x, ~,7÷Z,Y ; y~,Y,y2X+~÷Z-,/~+x ; /~+z,/2÷~*?+~,/~z; /~+x,/2~+7+Z,~z; 
Y,X, ~+'2+~; x,z, x+~÷z ; z,Y, x+7+z ; /~z,/~x,/2~+~Z ; ~'~x,~7~Y,/2+R+~,Z; /~Y,/,+z,~+~+~. 

Fnun2 X,Y,Z ; Y,X,X+Y+~[ ; X+¥+Z,Z,~ ; Z,X+Y+Z,~[ 

Fdd2 X,Y,Z ; Y,X,X+Y+Z ; i+X+Y+Z,/~+Z,/4+Y ; /4+Z,/@-X+Y+Z,/~[ 

1ram2 X,Y,Z ; Y+Z,X+Z,Z ; X,X+Z-,X+Y ; Y+Z,Y,X+Y. 

iba2 X,Y,Z ; Y+Z,X+Z,Z ; /L~X,/~X+~[,X+7; /~Y+Z,/~+Y,~[+Y. 

Ima2 X,Y,Z ; Y+Z,X+Z,Z ; X,/2+X+Z,/~X+7; Y+Z,/~+Y,/~[+Y. 

1222 X,Y,Z ; Y+~,X+Z,Z ; ~[,I[+Z,X+Y ; iZ+Z,?,X+?. 

1212121 X,Y,Z ; /2+Y+Z,X+Z',/u9-~'; /~,/u~-~[+Z,~[+y; ~'+Z,/2+y,/ug-X+?. 

I4 X,Y,Z ; Y+Z,X+Z,~[ ; Y,Y+Z,)[+Y ; X+~,X,X+Y. 

141 X,Y,Z ; Y+Z,X+Z,Z ; 3/4+Y,/4+Y+Z,/2~X+y ; ~+X+Z,/4+X,/2~XW. 

14ram X,Y,Z ; Y+Z,X+Z,Z ; Y,Y+Z,X+Y ; X+Z,X,X+?; 
Y,X,Z ; X+Z,Y+Z,Z ; X,X+Z,X+~ ; Y+Z,Y,X+Y. 



Space 
Group 

14cm 

141md 

141cd 

I422 

14122 

I~m2 

'I~c2 

l~2m 

1~2d 

123 

1213 

1432 

14132 

l~m 

l~3d 
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Table 1 (cont.) 

X,Y,Z ; Y+~,X+~,~ ; Y,Y+~,X+Y • X+Z~X,X+Y; 
/2+Y,/~X,Z /2+X+X,/2+Y+Z,~[; /~+X,/~+X+Z,X+~; /~+Y+Z,/~+Y,~[+Y. 

X,Y,Z ; Y+Z.X+~,~ ; 3/4+y,/4+y+E,/~+y ; 3/4+X+~,/d+X,/~X+~; 
9/4+Y,/4+X,/2+Z; a/4+X+Z,/~-Y+Z,/~+~[; X,X+~,X+~ ; y+~[,y,~+y. 

X,Y,Z ; Y+~,X+~[,Z ; $/4+Y,/4+Y+~[,/~+X+Y; #/4+X+~[,~4+X,/2+X+~; 
/,Y,yeX,/2Z; /eX+Z,ye~+~,/2E; /2X,/2X+~, x+~ ; /2Y+Z,/2~,~+Y. 

x,Y,Z ; Y+Z,x+Z,Z ; Y,Y+g,g+Y ; x+Z,x,x+7; 
7,g,Z ; g+z,Y+z,z ; Z,Z+z,g+Y ; Y+z,Y,x+Y. 

X,Y,Z ; Y+~,X+Z,~ ; $/4+Y,/4+Y+Z,/~+X+Y; ~/4+X+Z,~4+X,/~+X+Y; 
7,~,Z ; ~+z,Y+z,z ~/~,/~+~+z,/~+Y; ~A+~+z,/~+Y,/~x+~. 

x,Y,Z ; Y+Z,x+Z,Z ; 7,Y+z,x+7; ~+z,~,~+Y. 

X,Y,Z ; Y+Z,X+Z,Z ; Y,Y--+E,X+Y; X+Z,X,X--+Y; 
?,~[,Z ; ][+Z,?+Z,E ; X,X+~,X+~; Y+~,Y,~[+Y. 

x,Y,Z ; Y+Z,x+Z,g ; F,Y+z,x+? ; Z+z,Z,Z+Y; 
/~+?,/~,z ; /~+z,/~Y+z,z; /~x,/~x+Z,x+~; /~+Z,/~,~+~. 

X,Y,Z ; Y+~,X+Z,Z ; 7,7+z,x+7 ; Z+z,Z,Z+Y; 
Y,X,Z ; X+Z,Y+Z,Z ; ~,~+z,~+Y ; Y+Z,Y,X+Y. 

x,x,z ; Y+Z,X+Z,Z ; Y,Y+Z,X+Y; ; ~+z,~,~+Y; 
• /~ ,/~x,/~z; ~/~x+z,/~Y+z,/~; ~/~,/~+z,/~+Y; ~/~7+z,/~7,/~x+~. 

x,Y,z ; ~,~+z,~+Y ; 7+z,?,x+Y ; Y+Z,x+Z,Z; 
z,x,Y ; Z,Y+Z,x+Z ; ~+Y,~,~+z ; x+?,?+z,Y; 
Y,z,x ; 7,x+Y,Y+z ; x+g,~,Y+Z ; ~+z,~+Y,~. 

Z,X,Y ; {~+~,{~+Y+Z,X+Z ; ~+Y,/~+~[,/~+~[+E ; {~+X+~[,Y+Z,/2~; 
Y,Z,X ; /~Y,/~x+Y,7+z ; x+Z,/~,Z,/~,Y+~ /~+z,~+~,/~. 

Coordinates of I23+ 

X,~',~ ; X,X+Y,X+Z ; Y+Z,Z,~+Z ; Y+Z,~+Y,Y ; 
Y,][,Z ; Y,Y+Z,~[+Y ; X+Z,X,X+Y ; ~[+Z,~[+Z,Z ; 
Z,Y,X ; Z,X+Z,Y+Z ; X+Y,Y,Y+Z ; X+Y,X+~,X . 

Coordinates of 1213+ 

/~X,/2+Z,/2+Y; X,/~+X+Y,X+Z; Y+Z,Z,/2+X+Z ; /2+y÷z,x+y,y; 
/2+~'/~+~,/2+Z; Y,/2+Y+~,~[+Y; X+Z,X,/2+X+Y; /~X+Z,?+Z,Z; 
/;+Z'/~Y'/~+X; Z,/2~X+Z,Y+Z; X+Y,Y,/2+Y+~; /~+X+Y,X+Z,X. 

Coordinates of 123+ 
X,Z,Y ; ~[,~[+Y,~[+Z ; Y+Z,Z,X+Z ; Y+Z,X+Y,Y ; 
Y,X,Z ; %r,~[+Z,X+Ir ; ~[+Z,~[,~[+Y ; x+g,Y+g,g ; 
Z,Y,Z ; Z,X+Z,Y+Z ; X+Y,Y,?+z ; ~[+Y,~[+z,~[ . 

Coordinates of 1213+ 

/2Y,/~+x,/2+z ; r,/~+?+z,x+~ ; ~+z,z,/~+y ; /~x+LY+L~ ; 
/2+Z,/2Y,/~-X ; Z,/~-X+Z,Y+Z ; X+?,Y,/~-F+Z ; /Lg"X+Y,X+Z,X" • 

2 1 9  

ture-factor magnitudes is given (so that,  for a fixed 
functional form of the structurc factor, the magnitudes 
of all the structure seminvariants are determined) and 
the sign of any one structure seminvariant, the 
magnitude of which is different from 0 or ~, has been 
arbitrarily specified. 

I t  is further assumed throughout this paper that  the 
functional form of the structure factor is fixed. 

4 .  T h e  r e m a i n i n g  t y p e s  o f  s p a c e  g r o u p s  

4-01. Type 2P002 

Theorem 4.01.1. A single phase 7h is a structure 
scminvariant, i.e. its value is uniquely determined if, 
and only if, h = k  and 1 is even. 

Theorem 4.01-2. Let hl=/cl. Then any phase 7~h, 
which is linearly semi-independent (i.e. 11 is odd) has 
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.lust two possible values, and these differ from each 
other by z~. Either one of these two values ,nay i)e 
chosen. Once this is done, then the value of any phase 
q% which is linearly semi-dependent on q,~, (i.e. h = k) 
is uniquely determined. 

Theorem 4.01.3. Let l~ be even. Then the value of 
any phase ~h., which is linearly semi-independent 
(i.e. h 2 - k 2 # 0 )  may be specified arl)itrarily. Once this 
is done, the value of any phase q~h which is linea,'ly 
semi-dependent on g'n2 (i.e. 1 is even and h - k  is divis- 
il)le by ha-k2)  is uniquely determined. Any phase gh 
which is rationally semi-dependent on g h2 is also 
linearly semi-dependent on (}?h2, whence its value is 
uniquely determined, provided that  g'h2 is semi- 
primitive, i.e. provided that  h,_,-k,,= _+ 1. 

Theorem 4-01.4. Let h~ = kl and le t)e even. Let g~h~ 
and g:h~ be any two phases which constitute a linearly 
semi-independent set (i.e. I~ is odd and b 2 - k e = 0 ) .  
In accordance with the two previous theorems, either 
one of the two possible values of gh, may be chosen 
while the value of q:h2 may be specified arbitrarily. 
Once this is done the w~lue of any phase gh which is 
linearly semi-dependent on the pair ~Vh,, ~Ch,. is uniquely 
determined. Any phase q9 u, of necessity rationally 
semi-dependent on the pair g'hl, (]'h2, is also linearly 
semi-dependent on this pair, whence its value is 
uniquely determined, provided that  the pair g:h,, g:h,, 
is semi-primitive, i.e. provided that, ~,_,-ke = + I. 

4.02. Type 21)00 
Theorem 4.02.1. A single phase q,h is a structure 

seminvariant, i.e. its value is uniquely determined, if, 
and only if, h + k = 1 = 0. 

Theorem 4.02-2. The value of any phase $'h, which 
is linearly semi-independent (i.e. h, + kt and It are not 
both zero) may be specified arbitrarily. Once this is 
done, the value of any phase (fh which is linearly 
senti-dependent on ~Vh, is uniquely determined. An3" 
phase g~h which is rationally semi-dependent on q:'h, is 
also linearly semi-dependent on q0hi, whence its value 
is uniquely determined, provided that  ffh~ is semi- 
primitive, i.e. provided that  the greatest common 
divisor of h~ + k, and l~ is unity. 

Theorem 4.02.3. The values of any two phases 
q~h,, g=ho, constituting a linearly semi-independent set, 
i . e .  

j h, +k ,  11 ] 
i h2+k2 12i =# () '  

may be specified arbitrarily. Once this is done, the 
w, lue of any phase g'h which is linearly semi-dependent 
on the pair g~ha, ~h= is uniquely determined. Any phase 
q h, of necessity rationally semi-dependent on the pair 
q h,, $:h2, is also linearly semi-dependent on this pair, 
whence its value is uniquely determined, provided that  
the pair q.:h~, q"h2 is semi-primitive, i.e. provided that 

h2 + k~ 12 = 4-  I . 

A C 1 4 ~ 1 5  

4"03. Type 2P2~) 

4.04. Type 2P22 
These types have been treated previously (Haupt- 

man & Karle, 1956). 

4.05. Type "2P12() 
The()rem 4.05.1. A single phase (/'u is a seminw~rianl 

if, and only if, b is even and k+l=4l .  
Theorem 4.05.2. Let k t+/x=() .  Then any phase 

q~h, which is linearly semi-independent (i.e. hi is odd) 
has just two possible values and these differ h'om each 
other bv n. Either one of these two values may be 
chosen. Once this is done, the value of any phase q u 
which is linearly semi-dependent on g'h, (i.e. k + / = ( ) )  
is uniquely determined. 

Theorem 4.05.3. Let h.e be even. Then the value of 
any phase q.h., which is linearly semi-independent (i.e. 
k,_,+/2=()) may be specified ar/)itrarily. Once this is 
done, the wtlue of any phase q'h which is linearly semi- 
depen(tcnt on q:h= is uniquely determined. Any phase 
(/~h which is rationally semi-dependent on g'ho is also 
linearly semi-dependent on ~h2, whence its value is 
uniquely determined provided that q'h., is semi-primi- 
tive, i.e. provided that  k2 + le = + 1. 

Theorem 4.05.4. l,et kl +l ,  =() an(t b.e t)e even. Lel 
g h~ and g h2 bc an 3" two phases which constitute a 
linearly semi-independent set (i.e. h, is odd and 
k.,.+le#O). In accordance with the tw() previous 
theorems either one of the two possible values of g'h, 
may be chosen while the value of g'h2 may be specified 
arbitrarily. Once this is done, the value of any phase 
g'h which is linearly semi-dependent on the pair ¢'h,, g'h., 
is uniquely determined. Any phase q h, of necessity 
rationally senti-dependent on the pair q:h,, gh2, is also 
linearly semi-dependent on this pair, whence its value 
is uniquely determined, provided that  the pair q:h,, ~h.,. 
is semi-primitive, i.e. provided that ke+l, ,= + 1. 

4.06. Type 2Pt022 
Theorem 4.06. I. A single phase ~h is a seminvariant 

if, and only if, h + k = 0  and h = l  (rood 2). 
Theorem 4.06.2. Let hi +k l  =0.  Then any phase g h, 

which is linearly semi-independent (i.e. h l+l l  is odd) 
has just two possible values and these differ from each 
other 1) 5 ' ~. Either one of these two values may be 
chosen. Once this is done, the value of any phase g'h 
which is linearly semi-dependent (m gh, is uniquely 
determined. 

Theorem 4-06.3. Let h2 + k~ q: (), so that  q~h., is linearly 
semi-independent. Then the value of q':h2 may be 
Sl)ccified arl)itrarily. Once this is done, the wllue of 
any phase gh, which is linearly semi-dependent on gh2, 
is uniquely determined. Any phase q.h which is ra- 
tionally semi-dependent on g'h~ is also linearly semi- 
depcndent on g'h2 provided that  q:h., is semi-primitive, 
i.e. provided that  h2 + k,, = + 1. 

Theorem 4.06.4. Choose g h~ and q.h.~ as in the previous 
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two theorems. In  accordance with these theorems 
either of the two possible values of qru~ m a y  be chosen 
and the value of qru~ m a y  be specified arbi t rar i ly .  
Once this is done any  phase 7u, of necessity ra t ional ly  
semi-dependent  on the pair  g'hi, ~u2, is also l inearly 
semi-dependent  on this pair,  whence its value is 
uniquely determined,  provided tha t  the pair  g~ui, <l:n_~ 
is semi-primitive,  i.e. provided tha t  he+ke= +_ 1. 

4.07. Type 2P1222 

Theorem 4.07.1. A single phase ~va is a seminvar iant  
if, and only if, h - k -= 1 (rood 2). 

Theorem 4.07.2. Any phase (/)hi which is l inearly 
semi-independent  has just  two possible values and 
these differ from each other by 7e. Ei ther  one of these 
two values may  be chosen. Once this is done the value 
of any  phase which is l inearly semi-dependent  on 7~a~ 
is uniquely  determined.  

Theorem 4.07-3. Let the pair  of phases 9~a1, q~h~, bc 
a l inearly semi- independent  set. In  accordance with 
the previous theorem, either of the two possible values 
of 9~h~ m a y  be chosen and either of the two possible 
values of ~'u, m a y  be chosen. Once this is done, the 
value of any  phase q:a, of necessity l inearly semi- 
dei)endent on the pair q hv q:h2, is uniquely determined. 

4"08. Type 3P,_,2 

This type has 1)een previously described (Hauptman  
& Karlc,  1956). 

4.09. Type 3P24 

Theorem 4.09. !. A single phase ¢/h is a seminvar iant  
if, and only if, h +k+l=-O (mod 4). 

Theorem 4.09.2. Let the phase q'u~ be; l inearlv semi- 
independent .  Depending upon whether bt+k~ +l~ is 
odd or even, there are four or two possilde values for 
qn~ (differing by n/2 <>r ~ respectively). 

hi the first case any  of the four possible values for 
qn, may I)e chosen. Once this is <h>ne the value of any 
phase q h, of necessity l inearly senti-dependent on qn~, 
is uniquely determined. 

In the second case either of the two t)ossible values 
for qh~ may  be chosen. Once this is done then the value 
of any  phase $'h which is l inearly semi-dependent on 
<t':h~ is uniquely determined.  Fur thermore  any phase 
q h,, which is l inearly semi-independent  <>f qn~ then has 
two possible values differing from each other by ~. 
Either  one of these two values for a part icular  such 
phase quo may be chosen. Once this is done the wtlue 
of any  phase 7n, of necessity l inearly senti-dependent 
<m qh._,, is uniquely determined. 

4.1(i. Type 3Pa0 

Theorem 4.10.1. A single phase ~/'u is a seminwtr iant  
if, and only if, h+k=O.  

Theorem 4.10.2. Let h~ +k~ 4=0, so tha t  q~h~ is l inearly 
semi-independent.  Then the value of qu~ may  be 

specified arbi t rar i ly .  Once this is done, the value of 
any  phase q'u which is l inearly semi-dependent  on ¢¢'h~ 
is uniquely determined.  Any phase 7'h, of necessity 
ra t ional ly  semi-dependent on g'u~, is also l inearly 
semi-dependent on qua, provided tha t  ~C,u~ is semi- 
primitive,  i.e. provided tha t  hl + kl = + 1. 

4.11. Type 3Pa2* 

Theorem 4.11.1. A single phase ~'h is a seminvar iant  
if, and only if, h + k is even. 

Theorem 4.11.2. Let hi+It1 be odd so tha t  gh~ is 
l inearly semi-independent.  Then ~Ch~ has just  two 
possible values and these differ from each other by zt. 
Ei ther  one of these two values may  be chosen. Once 
this is done, the value of any  phase, of necessity 
l inearly semi-dependent on q~h~ is uniquely determined. 

4.12. Type 3Pa4 

Theorem 4.12.1. A single phase q:h is a seminvar iant  
if, and only if, h - k -  21 (mod 4). 

Theorem 4.12.2. Let the phase ~h~ be l inearly semi- 
independent.  Depending upon whether h ~ -  kl + 21~, is 
odd or even, there are four or two possible values for 
~%~ (differing by zz/2 or 0z, respectively). 

I n the first case any of the four possible values for 
¢fh~ may  be chosen. Once this is done, the value of 
any phase ~h, of necessity l inearly semi-dependent  on 
7'h~, is uniquely determined. 

[n the second case either of the two possible values 
for ~fht may  be chosen. Once this is done, the value of 
any phase ~% which is l inearly senti-dependent on q:hj 
is uniquely determined. Fm'thermore any  phase qh., 
which is l inearly send-independent  of qu~, then has two 
possilde values differing from each other by ,-z. Ei ther  
one of these two values, for a part icular  such phase 
q h.,, may  be chosen. Once this is done the wllue <>f any 
phase qh, of necessity l inearly semi-dependent on ~t h.,, 
is uniquely ¢tetermined. 

4.13. Type 31'411 

Theorem 4.13.1. A single phase 7h is a seminvariant  
if, and only if, h + k = l .  

Theorem 4.13.2. l,et h l + k ~ - l t + O ,  so that  ¢/.:ut is 
l inearly semi-independent.  Then the value of c/'h, may  
be specified arl)itrarily. Once this is done, the wdue of 
any phase q h which is l inearly send-dependent on qh, 
is uniquely determined. Any phase qh, of necessity 
rati()nallv semi-depetl(lent on qh,, is als() l inearly send- 
dependent  on qh,, pr<)vided that  qh, is senti-primitive, 
i.e. provided that  h l + k l -  11 = + 1. 

4" 14. Type 4PI 11 
• ~? Theorem 4.14.1 Every  phase is a seminvariant .  

* For space group P(14122 ), tile signs of all seminw~riants 
are uniquely determined. In this ease, therefore, the spe<;ifi<'~a- 
lion of the sign of a seminvariant is not a requirement for 
theorems 4.11.1 and 4-11.2 to be valid. 
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5. Concluding r e m a r k s  

This paper concludes the s tudy of the seminvar iants  
for the non-cent rosymmetr ic  space groups which was 
ini t ia ted in a previous paper  (Haup tman  & Ear le ,  
1956). The theory  of the seminvar iants  provides a 
basis for specifying an origin and the enant iomorph or 
reference frame when required. Fur thermore  it demon- 
strates the existence of relat ionships between the 
measured intensit ies and the values of phases. I t  will 
be the purpose of future publicat ions to elucidate the 
exact na ture  of these relat ionships and by these means 
to continue the unified program for phase determina- 

t ion in the non-centrosymmetr ic  space groups which 
has already been completed for the centrosymmetri(.  
once (Earle  & Haup tman ,  1961 ff.). 
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Neutron Diffraction Invest igat ion of Solid Solutions AITh2D. 
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Solid solutions of composition A1Th.,Dn, with n = 0, 2, 3, 4, have been studied by means of n(;utron 
diffracti<m. For n =4 the (leuterium atoms completely fill a set of equivalent Th-tetrahedra, quite 
similar to the arrangement in thorium hydride. F<)r the <>ther (,ompositions these sites are ]>artly 
oc(;upied. No evidence for ordering has been found, (wen at a temperature (>f S2 "K. 

The intermetal l ic  compound AlThe easily absorl)s 
hydrogen. Apart  from a two-phase region at. room 
tempera.ture between the emnpositions AITh2H0 and 
AITh..,.H,,~I.s, the hydrogen is dissolved homogene- 
ously unt i l  the u l t imate  composition A1TheH4 is 
reached (van Vueht, 1960). X-ray  invest igat ion shows 
tha t  the te t ragonal  symmet ry  of AITh,,. is e<mserved 
in the solid solutions. When the lattice parameters  
are plot ted against  n, the number  of hydrogen a.lonls 
per AIThe, a is found to increase up to n=2.  There 
it. shows a sharp break, followed by a decrease until  
saturat ion.  On the other hand e increases mono- 
tonically.  

As par t  of a larger program, a neutron-diffract ion 
investigation was under taken  with the object of 
establishing the hydrogen positions. Only micro- 
crystall ine samples were availalfle so tha t  to avoid a 
large background of incoherent  scat tering the deu- 
t erides ra ther  than  hydrides were used. The relevant  
neutron scattering lengths (ShEll & Wollan, 1956) are, 
in 1 0 l e  em., ba1=0"35, bTn=l-01 and bi)=0"65. 

. . . .  

* Present address: Reactor Centrum Nederland, Pel.ten, 
the Netherlands. 

Exper imenta l  procedure  

Tile deuterides were prepared in exact ly the same way 
as the hvdrides (van Vucht, 1960). For the ro(>m- 
temperal  Ere neut ron-diffraction measurements 10 ram. 
dia. cylindrical thin-walled aluminium sample holders 
were used. By means of a glass tul)e and a section of 
fernico tul)e these were c<mnected to the appara lus  in 
which the deuteride was prepared. Using a t i l t ing 
arrangement  the finished pr(>duct could be transferred 
to the sample holder under  w~cuum after which the 
glass e<)nnecting tube was sealed off. The samt)le 
holder was then placed on 1he diffraetometer  described 
I) 3, Ooedkoo t) (1957) and the diffraction pat tern  re- 
corded with 1.(~26 ~ neutrons. Resolution was mainly  
determined by Soller slits 0.25 ram. wide and 200 mm. 
hmg placed in front  of the counter. 

For measurements  at  low tempera ture  a single- 
jacketed vacuum cryostat  as shown in Fig. I was 
placed on the goniometer. Liquid air or liquid nitrogen 
was placed in the inner cylinder, to the bottom of 
which the sample holder was fixed. The glass-sealed 
sample holders were unsuited for this a r rangement  
and so a shorter one closed bv means of a screw-plug 


