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Seminvariants for Non-centrosymmetric Space Groups with
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The relationship of phase to the choice of origin, enantiomorph or frame of reference is clarified for
those non-centrosymmetric space groups for which the conventional unit cell is not primitive. The
theory employs special lincar combinations of the phases, the structure seminvariants. Simple
procedures are developed for selecting the origin by first fixing the functional form of the structure
factor, then specifying the sign of a seminvariant when required, and, finally. specifying arbitrarily

the values of a suitable set of phases.

This paper completes the studyv of the seminvariants for all the space groups.

1. Introduction

In the direct determination of phases from the ob-
served intensities it is necessary to relate the values
of the phases to the choice of origin, reference frame
and enantiomorph. This problem has already been
treated for the centrosymmetric space groups (Haupt-
man & Karle, 1953, 1959) and for the non-centrosym-
metric space groups for which the conventional unit
cell is primitive (Hauptman & Karle, 1956). It was
found that certain linear combinations of the phases,
the structure seminvariants, play a fundamental role
in these studies. The seminvariants show which linear
combinations are determined by the intensities alone
and how specifications of phases are to he made to
fix the origin, frame and enantiomorph.

In this paper we complete the study of seminvariants
for the various space groups, by considering the non-
centrosymmetric space groups for which the conven-
tional unit cell is non-primitive. The non-primitive cell
i~ transformed to an appropriate primitive cell by
means of well-known transformations. The methods
referred to above are then immediately applicable.

2. Primitive unit cells

The coordinates representing the space group relative
to a primitive unit cell are obtained from those cor-
responding to a non-primitive unit cell (International
Tables, 1952) by means of the following matrices:

1 1 0\

¢ P, ( I —1 0 ) (2-1)
L0 0O -1
—1 §] 0

AP, ( 0 —1 1 ) (2-2)
N T I

(2-3)

0 | 1
[ -P, ( 1 0 1>,
1 I 0

—1 i 1
F - P, ( 1 -1 1 ) (2-4)
1 1 -1

The results are shown in Table 1.

3. Definitions

In the discussion to follow several concepts will be
employed, namely, linear and rational dependence and
independence, primitive sets, equivalence and semin-
variance. These concepts are defined and developed
in our previous papers (Hauptman % Karle, 1956,
§3-§7; 1959, §4 and §5) to which the reader is re-
ferred. They culminate in the main result which iden-
tifies the structure seminvariants, namely those linear
combinations

2 Angn. (31)
h
where the 4y, are integers satisfying
X 4,hs= 0 (mod w;) . (3-2)

h

h; is the vector seminvariantly associated with the
phase ¢y, and @; is the seminvariant modulus of the
type. The seminvariant vectors and moduli are readily
derived from the equivalence classes. These are listed
in Table 2. It should be noted that the functional form
of the structure factor is the same for all origins
comprising an equivalence class.

This paper is concerned with describing in detail
simple methods for selecting the origin in each of four-
teen types of space groups. The procedures to be
presented are of a relatively simple nature, although
more general procedures may be readily derived from
Table 2.

All the theorems of this paper are valid under either
one of the following hypotheses.

Hypothesis A: The crystal structure is given; or

Hypothesis B: A sufficiently large number of struc-
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Table 1. Coordinates for centered non-centrosymmetric space groups referred to a primitive unit cell

Space

Group

c2 X,Y.2, ; Y,X,2

Cm X,Y,z i Y,X,2

ce X,Y,2 R N2%

Crm2 X,Y,2 i %Y.z, i Y.X,2 i Y,X,2

Cme2) X,Y,2 i XLYez 5 1.X.2 i YL X, /42

Cec2 xY,z, ; XY,z I &7 2 8 8/

c222 X,Y,Z 5 XY,z 5 Y.X,Z S &7

€222, X,Y,2 s XLY.4z 5 LXAZ 5 YLX.Z

Amm2 X,Y,2Z i X,Y,2 i X,2,Y 3 X,2,Y

Abm2 X,Y.2 5 KVALeZ 5 X2 X,2,Y

Ama2 X,Y,2 ; VAX,Y,2 VX, 2Z,Y i X,2,Y

Aba2 X,Y,Z S WS O AT B S SR AR

F432  X,Y,2  ; 2Z,X,Y i Y,2,X i LZ,Y i Y,X,Z i Z,Y,X
X+Y+2,2,Y ; X+¥+Z,Y,X ; X+¥+Z,X,2 ; X+Y+2,Y,7 3 X+Y+2,Z,X 3 X+Y+2,X,Y
2, %4542, ; Y, X4Y+Z,2  ; X XY+Z,Y ;5 V,X+Y+42,X 3 Z,x+v+2,Y 5 X,X+Y+2,Z
YL, X,X4742 5 X2, 84942 2,Y, 447 ;5 Z,X, X+Y+2 ; XY, X442 3 Y,Z,X4Y+2

F4132  X,Y,Z, ; Z,X,Y 3 Y.Z,X S B SR A B/ S /e R A /S B/ 3
X+Y+Z,2,Y ;5 X+¥4Z,¥,X ; X#¥+Z2,X,2 ; /x+y+z WYL /x+Y+z AT /x+¥+z X, '?,
Z, XeY+Z,X ;5 Y, XHYHZ,2 5 X, XHY+Z,Y f? / X+Y+Z,/4% ; X+Y4Z, /AY; X+Y+Z,
Y,X, X+Y+Z ; X,2, X4Y4Z ; 2,Y, XeV+Z 5 0Z,/4%, /4+x+v+z ; /+i,[¥ /;+X+Y+5 ZGY,4Z /,+x+y+z.

F222 X,Y,2 i LXK X+W4Z,z,Y 5 Z2,THY4Z,X

F23 X,Y,2 5 Z,X,Y ;o Y,2,X i X+Y+4Z,2,Y i X+Y+Z,Y,X 3 XHY+Z,X,2
2,X+Y4Z,X 5 Y,XHY4Z,2 5 X, X4T4Z,Y ;5 YLX,X+Y+4Z 3 X,2,X4Y42 5 2,Y,X+Y+Z

Fé43m X,Y,2 5 Z,X,Y i Y,2,X i X,2,Y 5 Y,X,Z i Z,Y,X
X+¥+Z,2,Y ; X+Y+Z,Y,Xx ; X+Y+Z,X,z ; X+Y+Z,v,2 ; X+Y+Z,2,X 5 X4Y+4Z,X,Y
Z,X4Y4Z,X ; Y, X4Y+Z,2 ; X, X+T+Z,Y ; Y,X+Y4Z,X s Z,%4Y4Z,Y 5 X,X4%+Z,2
YL, X%4747 5 X,2, 0442 ; 2,9, %4%47  ; Z2,X,T4%+Z 5 XY, X4Y+Z 5 Y,2, %4742

Fé3c LY,2 5 XY i Y,2,X 3 (AR évr 5 (FL/AX é‘t 5 (ALK

X+¥+Z,2,Y; X+Y+Z,Y,X ;5 X4Y+Z,X,2 ; LX+Y+Z gw/ 5 /AKAYAZ 2+z, X; fxowz 2+x

Zy X+Y4Z,X; ¥, Xt¥42,2 5 X, X+T+Z,Y j /xmz ; ; /bxmz 2+y, /+x+wz 2+z,
Y,X, X+¥+Z; X,2, R4¥+Z ; 2,Y, X+¥+7 ; Z+x,4+x+y+z ; zw VRaRATeZ; ,;z YA XA+ Z .

From2 X,Y,2 Y. X, X4Y4Z ; x+v42,Z,¥ ; Z,x+v+2,X

Fdd2 X,Y,% i YLK KHYHZ 5 aXAY4Z, VT, Y s VLV R+ez, e
Imm2 X,Y,2Z D OY4Z,X4Z,2 ;O X,X4Z,X4Y  ; Y4Z,Y, X+Y.

iba2 X,Y,2 3 YHZ,X4Z,Z ;5 X, RAEL XAY; YA, VY, RHY .
Ima2 X,Y,2 3 YHZ,X4Z,7 5 X, /KA, GRAT YA, VY, R
1222 X,Y,2 ; Y4Z,X+Z,Z ; X, X+2,X+Y ; ¥+2,Y,%+7.

12)2)2; X,Y,2 VYT, XAT, /T VR K2 XY Y42, VT, R4

14 X,Y,2 i Y4Z,X4Z,Z  ; Y,Y+Z,X4Y  ; X+4Z,X,X4Y.
141 X,Y,2 3 YZLXAZ, T VY, YT, ARAY ) Y RAT, aK, VAT
T4mm X,Y,2 P YHZ,X4Z,Z 5 YL YHZ,RHY  X4Z, X XA

Y,X,2 3 X+Z,Y+Z,7 5 X, X+Z,X+Y  ; Y+Z,Y,X+Y.
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Table 1 (cont.)

Space
Group
L4cm X, Y, ; Y+Z, x+2‘ Z i YL, YHZ, XY 3 X+Z,X,X+Y;
VoY VX, Z /2+x+z /2+Y+Z 7 /gi-x /2+x+z X+Y; Vo426, THY.
14)md X, Y, i Y4Z,X4Z,Z 3 VR YT R XA, VK, A RAT
Iy, /4+x Vot YAXAZ, YAE, /2+'z' X, X+Z,X+Y i Y4Z,Y, T+
I4jed XY 5 Y42, X4E,Z B/ Y+2 /gi-X‘!-Y AT
1€ /,py 3/‘9( N /‘+x+z "/‘O-Y-}-Z /2+z, ¢ GX+Z, X+Y f Y+Z, f Y, X+Y.
1422 X,Y,2Z 3 Y4Z,X42,7 ;5 YL YHZLTHY 3 XHZ X, X4,
¥.X,Z ; X+2,9+2,2 ; X, %+2,%+y  ; ¥+2,7,X+Y.
14122 X,Y,2 5 Y+Z,X4Z,Z /+Y Y+Z, /G X+Y ; Y HX+Z, ) x+Y.
! TRZ Tz, YR fx+z 7 TR Y pTHz f? Zrx+Y.
1% X,Y,2 s Y4Z,X+Z,Z  ; ¥,9+2,X+Y; ¥4z X, X4y,
1%4m2 X,Y,2 i Y4Z,X4Z,2 5 Y,Y+42,X4Y; X+Z,X,X+4Y;
7.%.Z ; X+2,¥42,2 ; X, X +Z X+Y; Y4Z,Y,X+Y.
" 1Z%c2 X,Y,2 5 Y+Z,X+Z,Z 3 Y,942,%X+Y ; X+2,X,%+Y;
¢ VAT VR, T VAT VY42, 25 oK, AT, XY YT, Y Y
142m X,Y,2 3 YZ,X4Z,Z ; T,742,%4Y 5 X2, X, T4y
Y,X,2 s X+Z,Y+Z,Z ; X,%4z,7+Y  ; ¥+2,Y,X+Y.
142d 3 YHAZ,XAZ 5 ¥,Y42,X47; ; X4z, X, %4Y;
’/M /4+x Va2 YxeT, /4*Y+Z IV s R BELE LR AT S
123 X,Y,2 3 LX42,84Y  ; Y428, 047 5 Y4Z,X+42,Z;
Z,X,Y s Z,Y+Z2,x+Z  ; X+, X R4z X+Y,742,Y;
Y,2,X 3 VL,X4Y,Y+2  ; X+Z,Z,Y+Z ; X+2,%+Y,X.
1213 X,Y,2 ; /&%, /#X+2,%+Y ; V42, x+Y Y+Z,%X+Z,)
! Z,X,Y ?‘Z ?*Y+Z X+Z ; X+ f X+Z ?*xﬂ Y+2, /2+
Y,2,X ; /oY, /5%+Y,Y42 ; x+z Y+Z X+z X+Y
1432 Coordinates of I23+
XZ,¥ 3 X,X4Y,X42Z  ; Y+42,2,%+42  ; Y+Z,%4Y,Y ;
¥.%X,Z 3 YL, YHZL,RHY  ; X+ZL,X,x+Y  ; %+42,¥42,2
z,7,X 3 2,X42,Y42  ; XHYLY, Y4 X+YL,X4Z,X .
14132 Coordinates of 123+
VKL ST XK, XA Y42, 2, KA VoHYAZ, XY, Y ;
VoL, [ R T LT, KA XAZ, X, AT AR, ¥42,2;
VAT, VR 2, R4z, T2 R, Y YT VAXAT, X4Z, X,
143m Coordinates of 123+
X,2,Y 3 XL, T2 5 Y4Z,2,X4Z 5 T42,X47,7
Y,X,2 3 V,942,X4Y ; 42, X, %+Y 5 X+Z,Y+4Z,7 ;
zZ,Y,2 3 Z,X4Z,Y4Z ; X+4Y,Y,¥+42 ; T4Y,%+2,X .
143d Coordinates of 123+
VKLY KT, TAZ 3 YT TRAE 5 e, X4 T
ot ta o Cas o+
VLK /2 5 T T2, XY 5 T2, K, RY 5 URAZ, YA, Z
VTR TR YT XYL T e VXY, X+42,X .
A2, /3HY 5 /2+ 3t ot at

ture-factor magnitudes is given (so that, for a fixed
functional form of the structure factor, the magnitudes
of all the structure seminvariants are determined) and
the sign of any one structure seminvariant, the
magnitude of which is different from 0 or z, has been
arbitrarily specified.

It is further assumed throughout this paper that the
functional form of the structurc factor is fixed.

4. The remaining types of space groups
4-01. Type 2P,02

Theorem 4-01-1. A slngle phase ¢y, is a structure
seminvariant, i.e. its value is uniquely determined if,
and only if, k—k and [ is even.

Theorem 4-01-2. Let hi=k;. Then any phase @,
which is linearly semi-independent (i.e. I, is odd) has
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just two possible values, and these differ from each
other by 7. Bither one of these two values may be
chosen. Once this is done, then the value of any phase
¢n which is linearly semi-dependent on ¢y, (i.c. h=k)
is uniquely determined.

Theorem 4-01-3. Let I> be even. Then the value of
any phase ¢pn, which is linearly semi-independent
(i.c. ha—ka=%0) may be specified arbitrarily. Once this
is done, the value of any phase ¢, which is linearly
semi-dependent on ¢y, (i.e. I is even and k—k is divis-
ible by h2— k) is uniquely determined. Any phase ¢p
which is rationally semi-dependent on gy, is also
linearly semi-dependent on ¢, whence its value is
uniquely determined, provided that ¢y, is semi-
primitive, i.e. provided that hs—ke= + 1.

Theorem 4-01-4. Let hy=% and l» be even. Let ¢y,
and ¢y, be any two phases which constitute a linearly
semi-independent set (i.e. 1 is odd and he—k2=0).
In accordance with the two previous theorems, either
one of the two possible values of ¢y, may be chosen
while the value of ¢n, may be specified arbitrarily.
Once this is done the value of any phase ¢y, which is
linearly semi-dependent on the pair gy, , ¢p, is uniquely
determined. Any phase @, of necessity rationally
semi-dependent on the pair ¢n,, ¢n, is also lincarly
semi-dependent on this pair, whence its value is
uniquely determined, provided that the pair gn,, ¢n,
is semi-primitive, i.e. provided that he—ke= £ 1.

1:02. Type 2P00

Theorem 4-02-1. A single phase ¢, is a structure
seminvariant, i.c. its value is uniquely determined, if,
and only if, A+ k=1=0.

Theorem 4-02-2. The value of any phase gn, which
is linearly semi-independent (i.e. 1+ 4y and /i are not
both zero) may be specified arbitrarily. Once this is
done, the value of any phase ¢, which is linearly
semi-dependent on @y, is uniquely determined. Any
phase ¢y, which is rationally semi-dependent on gy, is
also linearly semi-dependent on gy, whence its value
is uniquely determined, provided that ¢y, is semi-
primitive, i.e. provided that the greatest common
divisor of k1 + k1 and [; is unity.

Theorem 4-02-3. The values of any two phases
®hys Fhys CONstituting a linearly semi-independent set,
ie.

thitk Ll

|h2+k2 lzi +0,

may be specified arbitrarily. Once this is done, the
value of any phase ¢y, which is linearly semi-dependent
on the pair ¢y,, ¢n, is uniquely determined. Any phase
¢, of necessity rationally semi-dependent on the pair
Thy Fhy 1S also linearly semi-dependent on this pair,
whence its value is uniquely determined, provided that
the pair gn,, ¢n, i semi-primitive, i.e. provided that

Ak L

otk | T ED

ACl4—15

4:03. Type 2P20

104, Type 2P22
These types have been treated previously (Haupt-
man & Karle, 1956).

105, Type 2P,20

Theorem 4:05:1. A single phase ¢, is a seminvariant
if, and only if, & is even and k+41=0.

Theorem +:05-2. Let ki+l=0. Then any phase
@n, which is linearly semi-independent (i.e. hy is odd)
has just two possible values and these differ from each
other by z. Either one of these two values may be
chosen. Once this is done, the value of any phase ¢y
which is linearly semi-dependent on ¢y, (i.e. k+1=0)
is uniquely determined.

Theorem 4-05-3. Let A2 be even. Then the value of
any phase gp, which is linearly semi-independent (i.e.
k2+1l>=0) may be specified arbitrarily. Once this is
done, the value of any phase ¢y, which is linearly semi-
dependent on g, is uniquely deterinined. Any phase
@n which is rationally semi-dependent on gp, is also
linearly semi-dependent on ¢p,, whence its value is
uniquely determined provided that gy, is semi-primi-
tive, i.e. provided that ks +1ls= + 1.

Theorem 4:05-4. Let ki1 +1i=0 and k2 be even. Let
¢n, and gp, be any two phases which constitute a
lincarly semi-independent set (i.e. b is odd and
ka+lo+0). In accordance with the two previous
theorems either one of the two possible values of ¢y,
may be chosen while the value of ¢y, may be specified
arbitrarily. Once this is done, the value of any phase
@n which is linearly semi-dependent on the pair ¢n,, ¢n,
is uniquely determined. Any phase ¢y, of necessity
rationally semi-dependent on the pair ¢,, ¢n,, is also
linearly semi-dependent on this pair, whence its value
is uniquely determined, provided that the pair gp,, ¢n,
is semi-primitive, i.e. provided that ka4lo= +1.

4:06. Type 2P,022

Theorem 4-06:1. A single phase gy, is a seminvariant
if, and only if, 2+ k=0 and A= (mod 2).

Theorem 4-06-2. Let hi+ k1 =0. Then any phase ¢y,
which is linearly semi-independent (i.e. 71+ is odd)
has just two possible values and these differ from each
other by 7. Either one of these two values may be
chosen. Once this is done, the value of any phase ¢y
which is linearly semi-dependent on ¢y, is uniquely
determined.

Theorem 4-06-3. Let ho + k2 %0, 50 that ¢y, is linearly
semi-independent. Then the value of ¢p, may he
specified arbitrarily. Once this is done, the value of
any phase ¢y, which is linearly semi-dependent on ¢y,,
is uniquely determined. Any phase ¢, which is ra-
tionally semi-dependent on ¢y, is also linearly semi-
dependent on ¢y, provided that ¢y, is semi-primitive,
i.e. provided that he +k2= £ 1.

Theorem 4:06-4. Choose ¢y, and ¢, as in the previous
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two theorems. In accordance with these theorems
either of the two possible values of ¢, may be chosen
and the value of ¢y, may be specified arbitrarily.
Once this is done any phase ¢y, of necessity rationally
semi-dependent on the pair ¢p,, ¢n, is also linearly
semi-dependent on this pair, whence its value is
uniquely determined, provided that the pair ¢p,, ¢n,
is semi-primitive, i.e. provided that he+ke= +1.

4:07. Type 2P,222

Theorem 4-07-1. A single phase ¢y, is a seminvariant
if, and only if, A=k =1 (mod 2).

Theorem 4-07-2. Any phase ¢y, which is linearly
semi-independent has just two possible values and
these differ from each other by n. Either one of these
two values may be chosen. Once this is done the value
of any phase which is linearly semi-dependent on ¢y,
is uniquely determined.

Theorem 4-07-3. Let the pair of phases ¢y, ¢n,, be
a linearly semi-independent set. In accordance with
the previous theorem, either of the two possible values
of ¢, may be chosen and either of the two possible
values of ¢, may be chosen. Once this is done, the
value of any phase ¢y, of nccessity linearly semi-
dependent on the pair ¢y,, ¢p,, is uniquely determined.

4:08. Type 3P»2

This type has been previously described (Hauptman
& Karle, 1936).

1-09. Type 3P4

Theorem 4-09-1. A single phase ¢y, is a seminvariant
if, and only if, h+k+1=0 (mod 4).

Theorem 4-09-2. Let the phase ¢y, be linearly semi-
independent. Depending upon whether Ay+ki+1 is
odd or even, there are four or two possible values for
4w, (differing by /2 or z respectively).

In the first case any of the four possible values for
¢n, may be chosen. Once this is done the value of any
phase ¢y, of necessity lincarly semi-dependent on ¢y,
is uniquely determined.

In the sccond case either of the two possible values
for ¢, may be chosen. Once this is done then the value
of any phase ¢y, which is linearly semi-dependent on
¢n, is uniquely determined. Furthermore any phase
¢ n, Which is linearly semi-independent of ¢, then has
two possible values differing from each other by =z
Either one of these two values for a particular such
phase ¢y, may be chosen. Once this is done the value
of any phase ¢, of necessity linearly semi-dependent
on qp,, is uniquely determined.

4:10. Type 3130

Theorem 4-10-1. A single phase ¢y, is a seminvariant
if, and only if, A+ k=0.

Theorem 4-10-2. Let ky + k1 0, so that ¢y, is linearly
semi-independent. Then the value of ¢,, may be
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specified arbitrarily. Once this is done, the value of
any phase ¢y, which is linearly semi-dependent on ¢y,
is uniquely determined. Any phase ¢y, of necessity
rationally semi-dependent on ¢y,, is also linearly
semi-dependent on ¢p,, provided that ¢, is semi-
primitive, i.e. provided that k; +k = + 1.

1-11. Type 3P32*

Theorem 4-11-1. A single phase ¢y, is a seminvariant
if, and only if, A+ k is even.

Theorem 4-11-2. Let hi+k1 be odd so that ¢y, is
linearly semi-independent. Then ¢y, has just two
possible values and these differ from each other by .
Either one of these two values may be chosen. Once
this is done, the value of any phase, of necessity
linearly semi-dependent on ¢y, is uniquely determined.

1412, Type 3P4

Theorem 4-12-1. A single phase ¢y, is a seminvariant
if, and only if, A —k =2[ (mod 4).

Theorem 4-12-2, Let the phase ¢y, be linearly semi-
independent. Depending upon whether Ay —ky + 21, is
odd or even, there are four or two possible values for
¢n, (differing by 7/2 or 7, respectively).

In the first case any of the four possible values for
¢n, may be chosen. Once this is done, the value of
any phase ¢y, of necessity linearly semi-dependent on
@n,» 18 uniquely determined.

In the second case cither of the two possible values
for ¢, may be chosen. Onece this is done, the value of
any phase ¢, which is linearly semi-dependent on ¢y,
is uniquely determined. Furthermore any phase ¢y,
which is lincarly semi-independent of ¢, then has two
possible values differing from cach other by z. Either
one of these two values, for a particular such phase
¢'n,» may be chosen. Once this is done the value of any
phase ¢, of necessity linearly semi-dependent on gy,
ix uniquely determined.

+13. Type 3P40

Theorem 4-13-1. A single phase ¢y, is a seminvariant
if, and only if, A+k=1.

Theorem 4-13-2. Let hi+ki—0£0, so that @y 15
linearly semi-independent. Then the value of ¢y, may
be specified arbitrarily. Once this is done, the value of
any phase ¢ which is linearly semi-dependent on ¢y,
is uniquely determined. Any phase ¢y, of necessity
rationally semi-dependent on gy, is also linearly semi-
dependent on ¢y, provided that ¢y, is semi-primitive,
i.e. provided that hi+k1—0L= + 1.

414, Type 4P111
Theorem 4-14-1. Every phase is a seminvariant.

* For space group P(J4,22), the signs of all seminvariants
arc uniquely determined. In this case, therefore, the specifica-
tion of the sign of a seminvariant is not a requirement for
theorems 4-11-1 and 4-11-2 to be valid.



J.KARLE AND H. HAUPTMAN 223

5. Concluding remarks

This paper concludes the study of the seminvariants
for the non-centrosymmetric space groups which was
initiated in a previous paper (Hauptman & Karle,
1956). The theory of the seminvariants provides a
basis for specifying an origin and the enantiomorph or
reference frame when required. Furthermore it demon-
strates the existence of relationships between the
measured intensities and the values of phases. It will
be the purpose of future publications to elucidate the
exact nature of these relationships and by these means
to continue the unified program for phase determina-

Acta Cryst. (1961). 14, 223

tion in the non-centrosymmetric space groups which
has already been completed for the centrosymmetric
ones (Karle & Hauptman, 1961 ff.).
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Neutron Diffraction Investigation of Solid Solutions AlTh,D,,
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Solid solutions of composition AlTh,D,, with n =0, 2, 3, 4, have been studied by means of neutron
diffraction. For n =4 the deuterium atoms completely fill a set of equivalent Th-tetrahedra, quite
similar to the arrangement in thorium hydride. For the other compositions these sites are partly
occupied. No evidence for ordering has been found, even at a temperature of 82 °K.

The intermetallic compound AlThs easily absorbs
hydrogen. Apart from a two-phase region at room
temperature between the compositions AlTheHy and
AlThsH ~ .5, the hydrogen is dissolved homogenc-
ously until the ultimate composition AlThoHy is
reached (van Vucht, 1960). X-ray investigation shows
that the tetragonal syminetry of AlTh: is conserved
in the solid solutions. When the lattice parameters
are plotted against n, the number of hydrogen atoms
per AlThe, a is found to increase up to n=2. There
it shows a sharp break, followed by a decrease until
saturation. On the other hand ¢ increases
tonically.

As part of a larger program, a neutron-diffraction
investigation was undertaken with the object of
establishing the hydrogen positions. Only micro-
crystalline samples were available so that to avoid a
large background of incoherent scattering the deu-
terides rather than hydrides were used. The relevant
neutron scattering lengths (Shull & Wollan, 1956) are,
in 10-12 em., ba1=0:35, brn=1-01 and b;,=0-65.

mono-

* Present address: Reactor Centrum Nederland, Petten,
the Netherlands.

Experimental procedure

The deuterides were prepared in exactly the same way
as the hydrides (van Vucht, 1960). For the room-
temperature neutron-diffraction measurements 10 mm.
dia. evlindrical thin-walled aluminium sample holders
were used. By means of a glass tube and a section of
fernico tube these were connected to the apparatus in
which the deuteride was prepared. Using a tilting
arrangement the finished product could be transferred
to the sample holder under vacuum after which the
glass connecting tube was sealed off. The sample
holder was then placed on the diffractometer described
by Goedkoop (1957) and the diffraction pattern re-
corded with 1-026 A neutrons. Resolution was mainly
determined by Soller slits 0-25 mm. wide and 200 mm.
long placed in front of the counter.

For measurements at low temperature a single-
jacketed vacuum cryostat as shown in Fig. | was
placed on the goniometer. Liquid air or liquid nitrogen
was placed in the inner cylinder, to the bottom of
which the sample holder was fixed. The glass-sealed
sample holders were unsuited for this arrangement
and so a shorter one closed by means of a serew-plug



